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Abstract -  Data-dependent (DD) permutations (DDP) that 
are very suitable to cheap hardware implementation have 
been introduced as a cryptographic primitive for the design 
of fast firmware and software encryption systems. DDP can 
be performed with so called controlled permutation boxes 
(CPB) which are fast while implemented in cheap hardware. 
The latter defines the efficiency of the embedding of CPB in 
microcontrollers and microprocessors when adding a new 
fast instruction that allows one to perform DDP. Software 
and firmware encryption algorithms combining DDP with 
fast arithmetic operations are described.  
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I. INTRODUCTION 

Data-dependent (DD) permutations (DDP) suites well to the 
design of fast and secure block ciphers [1]-[3]. The DDP can 
be performed with so called controlled permutation (CP) 
boxes (CPB) having layered topology [4]-[6], which are fast 
while implemented in cheap hardware. The CPB can be 
easily embedded in microcontrollers and general purpose 
CPUs and used while designing fast firmware and software 
encryption systems. 

In present paper we propose a variant of the fast CPB 
instruction and consider the design and security of the block 
DDP-based ciphers oriented to firmware and software 
implementation.  

The paper is organized in the following way: In the 
second section we characterize DDP performed with CPB 
presenting detailed structure of the symmetric CPB used in 
the designed cryptalgorithms and in a new instruction for 
embedding in microcontrollers and CPUs. In section 3 we 
present two 64-bit block ciphers appropriate for firmware 
implementation and a software-oriented 128-bit cipher. 
Section 4 presents discussion of the results. 

II. DESIGN OF THE DDP-BOXES 

Different types of the layered CPBs [5] can be constructed 
using elementary switching elements P2/1 as elementary 
building blocks performing controlled transposition of two 
input bits x1 and x2. In the general case each P2/1-box is 
controlled with one bit v and forms two-bit output (y1, y2), 
where y1 = y1 + v and y2 = x2 − v. In this paper a layered CPB 
with n-bit input and m-bit control input is denoted as Pn/m. 
The dotted lines corresponding to CP boxes indicate the 
controlling bits.  

A Pn/m-box can be represented as a superposition  

Pn/m = L(V1)
°π1°L

(V2)
°π2°…°πs – 1°L

(Vs), 

where L is an active layer composed of n/2 switching 
elements, V1, V2, …, Vs are controlling vectors of the active 
layers from 1 to s, and π1, π2, …, πs – 1 are fixed 
permutations. 
The inverse CPB has the following structure 

P–1
n/m = L(Vs)

°π
–1

s – 1°L
(Vs − 1)

°π
–1

s – 2°…°π
–1

1°L
(V1). 

The components V1, V2, …, Vs compose the controlling 
vector of the Pn/m-box: V = (V1, V2, …, Vs). The topology of 
the CPBs P8/12 and P–1

8/12 is presented in Fig. 1. 
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Figure 1 
The boxes P8/12 (a) and P–1

8/12 (b). 
 
Suppose for arbitrary h ≤ n input bits xα1

, xα2
, ..., xαh

 and 
arbitrary h output bits yβ1

, yβ2
,..., yβh

 there is at least one 
value of the controlling vector V which specifies a CP-box 
permutation moving xαi

  to yβi
 for all i = 1, 2, ..., h. Such a 

Pn/m-box is called a CP-box of order h [1]. Is is easy to see 
that the boxes P8/12 and P–1

8/12 have the first order. 
Figure 2 shows structure of the second-order boxes 

P32/96 and P–1
32/96. Due to symmetric structure the mutual 

inverses P32/96 and P–1
32/96 differ only with the distribution of 

controlling bits over the boxes P2/1 in the same topology. 
When performing DDP operations with CPB P32/96 we form 
96-bit controlling vector depending on some 32-bit data 
subblock. Let L be a controlling data subblock. Thus, bits of 
L = (l1, ..., l32) are used on the average three times while 
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defining the controlling vector. When designing respective 
extension box it is reasonable to use the following criteria: 

Criterion 1. Let X = (x1, ..., x32) is the input vector of the 
P(V)

32/96-box. Then for all L and i the bit xi should be 
permuted depending on six different bits of L.  

Criterion 2. For all i the bit li should define exactly three 
bits of V. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
The boxes P32/96 (a) and P–1

32/96 (b). 
 
Below we use the estension box E providing the following 
relation between V and L: 

V1 = Ll;      V2 = Ll
>>>6;      V3 = Ll

>>>12; 
V4 = Lr      V5 = Lr

>>>6;      V6 = Lr
>>>12, 

where Ll = (l1, ..., l16), Lr = (l17, ..., l32), and Y = X>>>k denotes 
rotation of the n-bit word X by k bits, where we have 
yi = xi + k for 1 ≤ i ≤ n – k and yi = xi + k – n for n – k + 1 ≤ i ≤ n. 
Due to symmetric structure of P32/96 its modifications 
P(V)

32/96, where V = (V1, V2, …, V6), and P(V′ )
32/96, where 

V′ = (V6, V5, …, V1) are mutually inverse.  
This property of the symmetric CPB can be used in order to 
construct switchable CP boxes. This idea can be realized 
using very simple transposition box P(e)

96/1 implemented as 
some single layer CPB consisting of three parallel single-
layer boxes P(e)

2×16/1 (Fig. 3a). Input of each P(e)
2×16/1-box is 

divided into 16-bit left and 16-bit right inputs. The box 
P(e)

2×16/1 contains 16 parallel P(e)
2/1-boxes controlled with the 

same bit e. For example, P(0)
2×16/1(U) = U and 

P(0)
2×16/1(U) = U′ = (Ur, Ul), where U = (Ul, Ur) ∈{0, 1}32. 

The left (right) inputs of the P(e)
2/1-boxes correspond to the 

left (right) 16-bit input of the box P(e)
2×16/1. If the input 

vector of the box P(e)
96/1 is (V1, V2, …, V6), then at the output 

of P(e)
96/1 we have V′ = (V1, V2, …, V6) (if e = 0) or 

V′ = (V6, V5, …, V1) (if e = 1). Structure of the switchable 
CPB P(L, e)

32/32  is shown in Fig. 3b. In hardware the box 
P(e)

2/1 can be implemented using 6 nand gates transistors. 
The operational box P(L, e)

32/32 can be implemented with 864 
nand gates. The time delay of some CP box is defined by the 
number of active layers. Time delay of one layer is 
approximately equal to that of the XOR operation t⊕. Time 
delay of the P(L, e)

32/32-box operation (6t⊕) is less than that of 
the addition modulo 232 with high-speed carry. 

Straightforward estimates show that the P(L, e)
32/32-instruction 

can be added in microprocessor within less than 432 sqmil 
(for the 0.33 µm ASIC technology). Thus, the CPB P(L, e)

32/32 
can be easily implemented as a new fast instruction on some 
32-bit processors and microcontrollers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
Switchable CPB P(e)

96/1 (a) and P(e) 
32/32 (b). 

 
Another interesting variant is embedding the nine-layer CPB 
P(V)

32/144 of the maximal order (h = 32) [5]. The operation 
P(V)

32/144(X) can perform arbitrary given bit permutation on 
32-bit words. The hardware implementation cost of this 
instruction is about the same as that of the switchable CPB 
P(L, e)

32/32. Performing the operation P(V)
32/144 takes 1-2 cycles 

(depending on the architecture of the hypothetical 
microcontroller or CPU). Operation P(V)

32/144 can be used for 
cryptographic purposes (construction of fast ciphers and 
hash functions) and for some other special purposes. For 
example, the instruction P(V)

32/144 allows to perform on a 
32-bit word X = (X1, X2, X3, X4) different variants of rotation 
operation: 

Y = X>>>g, where 0 ≤ g ≤ 31, 
Y = (X1

>>>g1, X2
>>>g2, X3

>>>g3, X4
>>>g4),   0 ≤ g1, …, g4 ≤ 7, 

Y = ((X1, X2)
>>>g5, (X3, X4)

>>>g6),   0 ≤ g5, g6 ≤ 15, 
Y = (X1

>>>g7, (X2, X3, X4)
>>>g8),   0 ≤ g7 ≤ 7,  0 ≤ g8 ≤ 23, 

In addition to being well-suited towards cryptographic 
purposes, P(V)

32/144 can be used for fast and efficient 
implementations of a number of common software 
functions.  A prominent example is the bit-reversal 
permutation, which is used in a number of Fast Fourier 
Transform (FFT) algorithms.  A large number of multimedia 
applications apply the Discrete Cosine Transform (DCT) or 
Discrete Fourier Transform (DFT) as steps in the processing 
of multimedia data.  Many implementations rely on the FFT 
to perform these transforms. On a general-purpose 
uniprocessor, a bit-reversal operation can require 50 or more 
cycles to execute. The instruction P(V)

32/144 could perform a 
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single bit-reversal in as little as one cycle. Other 
permutations could be used to dramatically increase the 
performance of higher-radix FFTs.  

Thus, the CP-box instruction P(V)
32/144 can replace the 

already embedded rotation operation, economizing hardware 
resources and reducing to a minimum the hardware cost of 
the implementation of the CP-box instruction. If the CPU 
makers support encryption method based on DDP, then 
cryptographers will have the possibility to develop different 
variants of the software-oriented ciphers and hash functions 
based on DDP providing performance 400 - 1000 Mbit/s and 
more. In present paper we consider the instruction P(L, e)

32/32 
which is oriented to cryptographic use. 

III. FIRMWARE AND SOFTWARE ORIENTED DDP-
BASED CIPHERS 

We propose two 64-bit firmware-suitable ciphers Cobra-
F64a and Cobra-F64b and a 128-bit software-oriented cipher 
Cobra-S128. All ciphers use 128-bit key 
K = (K1, K2, K3, K4), where ∀ i  Ki ∈ {0, 1}32. No secret key 
preprocessing is used. While performing j round 
transformation subkeys are used directly as 32-bit round 
subkeys Qj

(1, e), Qj
(2, e), where j = 1, ..., R + 1 and e = 0 (e = 1) 

denotes encrypton (decryption). The number of rounds is 
R = 16 for Cobra-F64a, R = 20 for Cobra-F64b and R = 12 
(8) for Cobra-S128. Correspondence between secret key and 
round subkeys is defined by Table 1 and the following 
formulas  

for Cobra-F64a and Cobra-F64b: 
 (Q1

(1, 1), QR+1
(1, 1)) = (QR+1

(1, 0), Q1
(1, 0)), 

(Q1
(2, 1), QR+1

(2, 1)) = (QR+1
(2, 0), Q1

(2, 0)),  
(Qj

(1, 1), Qj
(2, 1)) = (QR−j+2

(2, 0), QR−j+2
(1, 0)),   ∀ j = 2, ..., R, 

and for Cobra-S128: 
 (Qj

(1, 1), Qj
(2, 1)) = (QR−j+1

(2, 0), QR−j+1
(1, 0)),   ∀ j = 1, ..., R. 

A. Firmware-suitable ciphers 
Input 64-bit data block X is divided into two 32-bit 
subblocks A and B. Encryption and decryption described by 
the general formula Y = F(e)(X, K) are performed in two 
stages: i) R rounds with e-dependent procedure Crypt(e) and 
ii) final transformation. Due to peculiarities of the structure 
of the round transformation of Cobra-F64a and Cobra-F64b 
initial transformation is not used. For both ciphers the data 
ciphering algorithm can be represented as follows: 

1. For j = 1 to R − 1 do:  
{(A, B) := Crypt(e)(A, B, Qj

(1, e), Qj
(2, e) );  (A, B) := (B, A)}. 

2. For j = R do: {(A, B) := Crypt(e)(A, B, Qj
(1, e), Qj

(2, e) )}. 
3. Perform final transformation:  
{Y = (Yl, Yh) := (A ⊕ QR+1

(1, e), B ⊕ QR+1
(2, e) ), where Y is the 

64-bit output data block, for Cobra-F64b or 
Y = (Yl, Yh) := (A –32 QR+1

(1, e),   B +32 QR+1
(2, e) ), where “+32” 

(“–32”) denotes modulo 232 addition (subtraction), for Cobra-
F64a}.  

The procedure Crypt(e) is described in Fig. 4a (for 
Cobra-F64a) and in Fig. 4b (for Cobra-F64b). Both 
procedures Crypt(e) are based on the instruction P(L, e)

32/32 in 
which the controlling vector is specified with the left data 
subblock. In a cheap firmware implementation these ciphers 
provide performance about 20 Mbit/s for some 
microcontroller working at 30 MHz. 
 a) b)  
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
Procedure Crypt(e) in Cobra-F64a (a)  and  Cobra-F64b (b). 

 
Table I 

Key scheduling in Cobra-F64a, Cobra-F64b, and Cobra-S128 
j Qj

(1,0) Qj
(2,0) j Qj

(1,0) Qj
(2,0) 

1 K1 K4 12 K3 K2 
2 K2 K3 13 K1 K3 
3 K3 K1 14 K4 K1 
4 K4 K2 15 K2 K3 
5 K2 K3 16 K3 K4 
6 K1 K2 17 K1 K2 
7 K4 K1 18 K4 K1 
8 K3 K4 19 K3 K4 
9 K1 K2 20 K1 K2 

10 K2 K3 21 K2 K3 
11 K4 K1 - - - 

 

B. Software-encryption system Cobra-S128 
Input 128-bit data block X is divided into four 32-bit 
subblocks A, B, C, D and data ciphering procedure 
Y = F(e)(X, K) is performed as follows: 

1. Perform initial transformation:  
{(A,B,C,D) := (A⊕Q1

(1, e), B⊕Q2
(1, e), C⊕Q3

(1, e), D⊕Q4
(1, e))}. 

2. Using procedure Crypt(e) (Fig. 5) for j = 1 to R−1 do:  
{(A,B,C,D) := Crypt(e)(A,B,C,D,Qj

(1, e),Qj
(2, e));  (A,B,C,D) :=  

(B,A,D,C)}. 
3. Do: {(A,B,C,D) := Crypt(e)(A,B,C,D, QR

(1, e), QR
(2, e))}. 

4. Perform final transformation: 
{Y = (A,B,C,D) := 

:= (A ⊕ QR
(2,e), B ⊕ QR−1

(2,e), C ⊕ QR−2
(2,e), D ⊕ QR−3

(2,e))}. 

We estimate that the twelve-round (eight-round) Cobra-
S128 can provide very high performance, about 400 (600) 

P32/32 
(A, e) 

+32 

P32/32 
(A, e) 

–32 
(1, Qj 

e) 

A 

(2, e) 
Qj 

A B B 

Qj 
(1,e) 

( , e) 2
Qj 

>>>8 

>>>8 

P32/32 
(A, e) 

32 32 



 

Mbit/s, for some hypothetical Pentium-like processor with 
the embedded CP-box instruction P(L, e)

32/32. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
Procedure Crypt(e) in Cobra-S128. 

 

C. Secyrity estimation results 
Trying different attack against the DDP-based Cobra ciphers 
we have found the differential analysis (DA) is the most 
efficient one. Let ∆h

X denote the X value difference with h 
active (non-zero) bits and p(r|∆) denote the probability that 
the ∆ difference passes r rounds without change. Our best 
DA uses the differences ∆(1) = (∆1

A, ∆0
B), ∆(2) = (∆0

A, ∆1
B), 

and ∆(3) = (∆1
A, ∆0

B, ∆0
C, ∆1

D) for which we have get the 
following probabilities p(3|∆(1)) = 2–21, p(2|∆(2)) = 2–12, and  
p(2|∆(3)) = 2–32 for the Cobra ciphers F64a, F64b, and S128, 
correspondingly. From the last values we derive that the 
ciphers are indistinguishable from a random transformation 
for R ≥ 9 (for Cobra-F64a), R ≥ 10 (for Cobra-F64b), and 
R ≥ 8 (for Cobra-S128). 

The used key scheduling is secure against basic related-
key attacks. In spite of the simplicity of the key schedule the 
“symmetric” keys K′ =(X, Y, X, Y) or K′′ = (X, X, X, X) are 
not weak, since encryption and decryption require change of 
the parameter e. Indeed,  from Fig. 4 and 5 it is easy to see 
that for all considered ciphers we have F(e=0)(C, K′′) ≠ M, 
where C = F(e=0)(M, K′′). For comparison we can note that 
for all X the key K′′ = (X, X, X, X) is weak for SPECTR-H64 
[5] that does not use switchable CPB operations. It seems to 
be difficult to calculate a semi-weak key-pair for the Cobra 
ciphers, if it is possible at all.  

Thus, using the switchable operations one can prevent 
weak and semi-weak keys in the case of simple key 
scheduling. Some other items of the use of switchable 
controlled operations are considered in [6]. In the case when 
keys are not changed often one can use one of the known 
key scheduling procedures providing pseudorandom 
generation of the round keys. 

IV. DISSCUSSION 

The DDP earlier used in several hardware-oriented 64-bit 
ciphers can be also effectively used for designing fast 
software-suitable cryptosystems. We have proposed to 
embed some CP-box instruction in general purpose 
processors and in different types of microcontrollers. A 
simple variant of the fast switchable P(L, e)

32/32-box 
instruction has been designed and used in one 128-bit 
software and two firmware-oriented 64-block ciphers 
illustrating efficiency of the cryptographic use of this 
instruction. More advanced P(V)

32/144-box instruction can 
perform all possible bit-permutation operations on 32-bit 
words. Each of such operations can be specified by the 
controlling vector V and it is not difficult to find its value for 
all possible permutational operations [4] including special 
ones.  

A D C B 

P32/32 
(B, e) 

This spreads significance of the advanced CP-box 
instruction far beyond cryptographic applications and can 
attract serious attention of the CPU manufactures, since a 
cheap embedding of the P(V)

32/144-box instruction imparts 
attractive properties to the general purpose processors. One 
of the lasts is the potential possibility to get more than 500 
Mbit/s encryption speed in software. The ability to perform 
special permutations, such as bit-reversal, can significantly 
improve the performance of multimedia applications which 
rely on efficient DCT and DFT algorithms. We hope this 
work will attract more attention of cryptographic community 
to DDP in respect of the cryptanalysis and design of the 
DDP-based block ciphers, hash functions, and key expansion 
algorithms. 
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