

FAST DDP-BASED CIPHERS: FROM HARDWARE TO SOFTWARE

Nikolay Moldovyan1, Nikolay Goots1, Peter Moldovyanu1, and Doug Summerville2,
1 Specialized Center of Program Systems “SPECTR”, Kantemirovskaya, 10, St.Petersburg 197342,

Russia; nmold@cobra.ru
2 Binghamton University, PO Box 6000, Binghamton NY, USA; dsummer@binghamton.edu

Abstract - Data-dependent (DD) permutations (DDP) that
are very suitable to cheap hardware implementation have
been introduced as a cryptographic primitive for the design
of fast firmware and software encryption systems. DDP can
be performed with so called controlled permutation boxes
(CPB) which are fast while implemented in cheap hardware.
The latter defines the efficiency of the embedding of CPB in
microcontrollers and microprocessors when adding a new
fast instruction that allows one to perform DDP. Software
and firmware encryption algorithms combining DDP with
fast arithmetic operations are described.

Acknowledgement: This research was supported by EOARD/AFRL
grant #1994p.

I. INTRODUCTION

Data-dependent (DD) permutations (DDP) suites well to the
design of fast and secure block ciphers [1]-[3]. The DDP can
be performed with so called controlled permutation (CP)
boxes (CPB) having layered topology [4]-[6], which are fast
while implemented in cheap hardware. The CPB can be
easily embedded in microcontrollers and general purpose
CPUs and used while designing fast firmware and software
encryption systems.

In present paper we propose a variant of the fast CPB
instruction and consider the design and security of the block
DDP-based ciphers oriented to firmware and software
implementation.

The paper is organized in the following way: In the
second section we characterize DDP performed with CPB
presenting detailed structure of the symmetric CPB used in
the designed cryptalgorithms and in a new instruction for
embedding in microcontrollers and CPUs. In section 3 we
present two 64-bit block ciphers appropriate for firmware
implementation and a software-oriented 128-bit cipher.
Section 4 presents discussion of the results.

II. DESIGN OF THE DDP-BOXES

Different types of the layered CPBs [5] can be constructed
using elementary switching elements P2/1 as elementary
building blocks performing controlled transposition of two
input bits x1 and x2. In the general case each P2/1-box is
controlled with one bit v and forms two-bit output (y1, y2),
where y1 = y1 + v and y2 = x2 − v. In this paper a layered CPB
with n-bit input and m-bit control input is denoted as Pn/m.
The dotted lines corresponding to CP boxes indicate the
controlling bits.

A Pn/m-box can be represented as a superposition

Pn/m = L(V1)
°π1°L

(V2)
°π2°…°πs – 1°L

(Vs),

where L is an active layer composed of n/2 switching
elements, V1, V2, …, Vs are controlling vectors of the active
layers from 1 to s, and π1, π2, …, πs – 1 are fixed
permutations.
The inverse CPB has the following structure

P–1
n/m = L(Vs)

°π
–1

s – 1°L
(Vs − 1)

°π
–1

s – 2°…°π
–1

1°L
(V1).

The components V1, V2, …, Vs compose the controlling
vector of the Pn/m-box: V = (V1, V2, …, Vs). The topology of
the CPBs P8/12 and P–1

8/12 is presented in Fig. 1.

P2/1 P2/1 P2/1 P2/1

Figure 1
The boxes P8/12 (a) and P–1

8/12 (b).

Suppose for arbitrary h ≤ n input bits xα1

, xα2
, ..., xαh

 and
arbitrary h output bits yβ1

, yβ2
,..., yβh

 there is at least one
value of the controlling vector V which specifies a CP-box
permutation moving xαi

 to yβi
 for all i = 1, 2, ..., h. Such a

Pn/m-box is called a CP-box of order h [1]. Is is easy to see
that the boxes P8/12 and P–1

8/12 have the first order.
Figure 2 shows structure of the second-order boxes

P32/96 and P–1
32/96. Due to symmetric structure the mutual

inverses P32/96 and P–1
32/96 differ only with the distribution of

controlling bits over the boxes P2/1 in the same topology.
When performing DDP operations with CPB P32/96 we form
96-bit controlling vector depending on some 32-bit data
subblock. Let L be a controlling data subblock. Thus, bits of
L = (l1, ..., l32) are used on the average three times while

a)

b)

V1

V2

V3

V3

V2

V1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

defining the controlling vector. When designing respective
extension box it is reasonable to use the following criteria:

Criterion 1. Let X = (x1, ..., x32) is the input vector of the
P(V)

32/96-box. Then for all L and i the bit xi should be
permuted depending on six different bits of L.

Criterion 2. For all i the bit li should define exactly three
bits of V.

Figure 2
The boxes P32/96 (a) and P–1

32/96 (b).

Below we use the estension box E providing the following
relation between V and L:

V1 = Ll; V2 = Ll
>>>6; V3 = Ll

>>>12;
V4 = Lr V5 = Lr

>>>6; V6 = Lr
>>>12,

where Ll = (l1, ..., l16), Lr = (l17, ..., l32), and Y = X>>>k denotes
rotation of the n-bit word X by k bits, where we have
yi = xi + k for 1 ≤ i ≤ n – k and yi = xi + k – n for n – k + 1 ≤ i ≤ n.
Due to symmetric structure of P32/96 its modifications
P(V)

32/96, where V = (V1, V2, …, V6), and P(V′)
32/96, where

V′ = (V6, V5, …, V1) are mutually inverse.
This property of the symmetric CPB can be used in order to
construct switchable CP boxes. This idea can be realized
using very simple transposition box P(e)

96/1 implemented as
some single layer CPB consisting of three parallel single-
layer boxes P(e)

2×16/1 (Fig. 3a). Input of each P(e)
2×16/1-box is

divided into 16-bit left and 16-bit right inputs. The box
P(e)

2×16/1 contains 16 parallel P(e)
2/1-boxes controlled with the

same bit e. For example, P(0)
2×16/1(U) = U and

P(0)
2×16/1(U) = U′ = (Ur, Ul), where U = (Ul, Ur) ∈{0, 1}32.

The left (right) inputs of the P(e)
2/1-boxes correspond to the

left (right) 16-bit input of the box P(e)
2×16/1. If the input

vector of the box P(e)
96/1 is (V1, V2, …, V6), then at the output

of P(e)
96/1 we have V′ = (V1, V2, …, V6) (if e = 0) or

V′ = (V6, V5, …, V1) (if e = 1). Structure of the switchable
CPB P(L, e)

32/32 is shown in Fig. 3b. In hardware the box
P(e)

2/1 can be implemented using 6 nand gates transistors.
The operational box P(L, e)

32/32 can be implemented with 864
nand gates. The time delay of some CP box is defined by the
number of active layers. Time delay of one layer is
approximately equal to that of the XOR operation t⊕. Time
delay of the P(L, e)

32/32-box operation (6t⊕) is less than that of
the addition modulo 232 with high-speed carry.

Straightforward estimates show that the P(L, e)
32/32-instruction

can be added in microprocessor within less than 432 sqmil
(for the 0.33 µm ASIC technology). Thus, the CPB P(L, e)

32/32
can be easily implemented as a new fast instruction on some
32-bit processors and microcontrollers.

Figure 3
Switchable CPB P(e)

96/1 (a) and P(e)
32/32 (b).

Another interesting variant is embedding the nine-layer CPB
P(V)

32/144 of the maximal order (h = 32) [5]. The operation
P(V)

32/144(X) can perform arbitrary given bit permutation on
32-bit words. The hardware implementation cost of this
instruction is about the same as that of the switchable CPB
P(L, e)

32/32. Performing the operation P(V)
32/144 takes 1-2 cycles

(depending on the architecture of the hypothetical
microcontroller or CPU). Operation P(V)

32/144 can be used for
cryptographic purposes (construction of fast ciphers and
hash functions) and for some other special purposes. For
example, the instruction P(V)

32/144 allows to perform on a
32-bit word X = (X1, X2, X3, X4) different variants of rotation
operation:

Y = X>>>g, where 0 ≤ g ≤ 31,
Y = (X1

>>>g1, X2
>>>g2, X3

>>>g3, X4
>>>g4), 0 ≤ g1, …, g4 ≤ 7,

Y = ((X1, X2)
>>>g5, (X3, X4)

>>>g6), 0 ≤ g5, g6 ≤ 15,
Y = (X1

>>>g7, (X2, X3, X4)
>>>g8), 0 ≤ g7 ≤ 7, 0 ≤ g8 ≤ 23,

In addition to being well-suited towards cryptographic
purposes, P(V)

32/144 can be used for fast and efficient
implementations of a number of common software
functions. A prominent example is the bit-reversal
permutation, which is used in a number of Fast Fourier
Transform (FFT) algorithms. A large number of multimedia
applications apply the Discrete Cosine Transform (DCT) or
Discrete Fourier Transform (DFT) as steps in the processing
of multimedia data. Many implementations rely on the FFT
to perform these transforms. On a general-purpose
uniprocessor, a bit-reversal operation can require 50 or more
cycles to execute. The instruction P(V)

32/144 could perform a

P8/12
V6
V5
V4

P8/12
–1

V3
V2
V1

P8/12

P8/12
–1

P8/12

P8/12
–1

P8/12

P8/12
–1

V1
V2
V3

V4
V5
V6

a) b) 1 . . . 8 9 . .. 16 17.24 25.32

1 8 9 16 17.24 25… . . .32

X 1
e

 (
P2x16/1

e)

(e)
P96/1

 E

(
P32/32

L,e)

 (e)
P96/1

 P32/96

32

32

96 96 32

L
Y

V3 V2 V1 V4 V5 V6 e
1

16
(e)

V′2 V′3 V′1 V′4 V′5 V′6

V′ V

b)

a)
 P2x16/1

 (
P2x16/1

e)

single bit-reversal in as little as one cycle. Other
permutations could be used to dramatically increase the
performance of higher-radix FFTs.

Thus, the CP-box instruction P(V)
32/144 can replace the

already embedded rotation operation, economizing hardware
resources and reducing to a minimum the hardware cost of
the implementation of the CP-box instruction. If the CPU
makers support encryption method based on DDP, then
cryptographers will have the possibility to develop different
variants of the software-oriented ciphers and hash functions
based on DDP providing performance 400 - 1000 Mbit/s and
more. In present paper we consider the instruction P(L, e)

32/32
which is oriented to cryptographic use.

III. FIRMWARE AND SOFTWARE ORIENTED DDP-
BASED CIPHERS

We propose two 64-bit firmware-suitable ciphers Cobra-
F64a and Cobra-F64b and a 128-bit software-oriented cipher
Cobra-S128. All ciphers use 128-bit key
K = (K1, K2, K3, K4), where ∀ i Ki ∈ {0, 1}32. No secret key
preprocessing is used. While performing j round
transformation subkeys are used directly as 32-bit round
subkeys Qj

(1, e), Qj
(2, e), where j = 1, ..., R + 1 and e = 0 (e = 1)

denotes encrypton (decryption). The number of rounds is
R = 16 for Cobra-F64a, R = 20 for Cobra-F64b and R = 12
(8) for Cobra-S128. Correspondence between secret key and
round subkeys is defined by Table 1 and the following
formulas

for Cobra-F64a and Cobra-F64b:
 (Q1

(1, 1), QR+1
(1, 1)) = (QR+1

(1, 0), Q1
(1, 0)),

(Q1
(2, 1), QR+1

(2, 1)) = (QR+1
(2, 0), Q1

(2, 0)),
(Qj

(1, 1), Qj
(2, 1)) = (QR−j+2

(2, 0), QR−j+2
(1, 0)), ∀ j = 2, ..., R,

and for Cobra-S128:
 (Qj

(1, 1), Qj
(2, 1)) = (QR−j+1

(2, 0), QR−j+1
(1, 0)), ∀ j = 1, ..., R.

A. Firmware-suitable ciphers
Input 64-bit data block X is divided into two 32-bit
subblocks A and B. Encryption and decryption described by
the general formula Y = F(e)(X, K) are performed in two
stages: i) R rounds with e-dependent procedure Crypt(e) and
ii) final transformation. Due to peculiarities of the structure
of the round transformation of Cobra-F64a and Cobra-F64b
initial transformation is not used. For both ciphers the data
ciphering algorithm can be represented as follows:

1. For j = 1 to R − 1 do:
{(A, B) := Crypt(e)(A, B, Qj

(1, e), Qj
(2, e)); (A, B) := (B, A)}.

2. For j = R do: {(A, B) := Crypt(e)(A, B, Qj
(1, e), Qj

(2, e))}.
3. Perform final transformation:
{Y = (Yl, Yh) := (A ⊕ QR+1

(1, e), B ⊕ QR+1
(2, e)), where Y is the

64-bit output data block, for Cobra-F64b or
Y = (Yl, Yh) := (A –32 QR+1

(1, e), B +32 QR+1
(2, e)), where “+32”

(“–32”) denotes modulo 232 addition (subtraction), for Cobra-
F64a}.

The procedure Crypt(e) is described in Fig. 4a (for
Cobra-F64a) and in Fig. 4b (for Cobra-F64b). Both
procedures Crypt(e) are based on the instruction P(L, e)

32/32 in
which the controlling vector is specified with the left data
subblock. In a cheap firmware implementation these ciphers
provide performance about 20 Mbit/s for some
microcontroller working at 30 MHz.
 a) b)

Figure 4
Procedure Crypt(e) in Cobra-F64a (a) and Cobra-F64b (b).

Table I

Key scheduling in Cobra-F64a, Cobra-F64b, and Cobra-S128
j Qj

(1,0) Qj
(2,0) j Qj

(1,0) Qj
(2,0)

1 K1 K4 12 K3 K2
2 K2 K3 13 K1 K3
3 K3 K1 14 K4 K1
4 K4 K2 15 K2 K3
5 K2 K3 16 K3 K4
6 K1 K2 17 K1 K2
7 K4 K1 18 K4 K1
8 K3 K4 19 K3 K4
9 K1 K2 20 K1 K2

10 K2 K3 21 K2 K3
11 K4 K1 - - -

B. Software-encryption system Cobra-S128
Input 128-bit data block X is divided into four 32-bit
subblocks A, B, C, D and data ciphering procedure
Y = F(e)(X, K) is performed as follows:

1. Perform initial transformation:
{(A,B,C,D) := (A⊕Q1

(1, e), B⊕Q2
(1, e), C⊕Q3

(1, e), D⊕Q4
(1, e))}.

2. Using procedure Crypt(e) (Fig. 5) for j = 1 to R−1 do:
{(A,B,C,D) := Crypt(e)(A,B,C,D,Qj

(1, e),Qj
(2, e)); (A,B,C,D) :=

(B,A,D,C)}.
3. Do: {(A,B,C,D) := Crypt(e)(A,B,C,D, QR

(1, e), QR
(2, e))}.

4. Perform final transformation:
{Y = (A,B,C,D) :=

:= (A ⊕ QR
(2,e), B ⊕ QR−1

(2,e), C ⊕ QR−2
(2,e), D ⊕ QR−3

(2,e))}.

We estimate that the twelve-round (eight-round) Cobra-
S128 can provide very high performance, about 400 (600)

P32/32
(A, e)

+32

P32/32
(A, e)

–32
(1, Qj

e)

A

(2, e)
Qj

A B B

Qj
(1,e)

(, e) 2
Qj

>>>8

>>>8

P32/32
(A, e)

32 32

Mbit/s, for some hypothetical Pentium-like processor with
the embedded CP-box instruction P(L, e)

32/32.

Figure 4
Procedure Crypt(e) in Cobra-S128.

C. Secyrity estimation results
Trying different attack against the DDP-based Cobra ciphers
we have found the differential analysis (DA) is the most
efficient one. Let ∆h

X denote the X value difference with h
active (non-zero) bits and p(r|∆) denote the probability that
the ∆ difference passes r rounds without change. Our best
DA uses the differences ∆(1) = (∆1

A, ∆0
B), ∆(2) = (∆0

A, ∆1
B),

and ∆(3) = (∆1
A, ∆0

B, ∆0
C, ∆1

D) for which we have get the
following probabilities p(3|∆(1)) = 2–21, p(2|∆(2)) = 2–12, and
p(2|∆(3)) = 2–32 for the Cobra ciphers F64a, F64b, and S128,
correspondingly. From the last values we derive that the
ciphers are indistinguishable from a random transformation
for R ≥ 9 (for Cobra-F64a), R ≥ 10 (for Cobra-F64b), and
R ≥ 8 (for Cobra-S128).

The used key scheduling is secure against basic related-
key attacks. In spite of the simplicity of the key schedule the
“symmetric” keys K′ =(X, Y, X, Y) or K′′ = (X, X, X, X) are
not weak, since encryption and decryption require change of
the parameter e. Indeed, from Fig. 4 and 5 it is easy to see
that for all considered ciphers we have F(e=0)(C, K′′) ≠ M,
where C = F(e=0)(M, K′′). For comparison we can note that
for all X the key K′′ = (X, X, X, X) is weak for SPECTR-H64
[5] that does not use switchable CPB operations. It seems to
be difficult to calculate a semi-weak key-pair for the Cobra
ciphers, if it is possible at all.

Thus, using the switchable operations one can prevent
weak and semi-weak keys in the case of simple key
scheduling. Some other items of the use of switchable
controlled operations are considered in [6]. In the case when
keys are not changed often one can use one of the known
key scheduling procedures providing pseudorandom
generation of the round keys.

IV. DISSCUSSION

The DDP earlier used in several hardware-oriented 64-bit
ciphers can be also effectively used for designing fast
software-suitable cryptosystems. We have proposed to
embed some CP-box instruction in general purpose
processors and in different types of microcontrollers. A
simple variant of the fast switchable P(L, e)

32/32-box
instruction has been designed and used in one 128-bit
software and two firmware-oriented 64-block ciphers
illustrating efficiency of the cryptographic use of this
instruction. More advanced P(V)

32/144-box instruction can
perform all possible bit-permutation operations on 32-bit
words. Each of such operations can be specified by the
controlling vector V and it is not difficult to find its value for
all possible permutational operations [4] including special
ones.

A D C B

P32/32
(B, e)

This spreads significance of the advanced CP-box
instruction far beyond cryptographic applications and can
attract serious attention of the CPU manufactures, since a
cheap embedding of the P(V)

32/144-box instruction imparts
attractive properties to the general purpose processors. One
of the lasts is the potential possibility to get more than 500
Mbit/s encryption speed in software. The ability to perform
special permutations, such as bit-reversal, can significantly
improve the performance of multimedia applications which
rely on efficient DCT and DFT algorithms. We hope this
work will attract more attention of cryptographic community
to DDP in respect of the cryptanalysis and design of the
DDP-based block ciphers, hash functions, and key expansion
algorithms.

[1] Moldovyan A.A. and Moldovyan N.A., “A cipher based on

data-dependent permutations”, Journal of Cryptology, 2002,
vol. 15, no. 1, pp.61-72.

[2] Sklavos N. and Koufopavlou O., "Architectures and FPGA
Implementations of the SCO (-1,-2,-3) Ciphers Family",
proceedings of the 12th International Conference on Very
Large Scale Integration, (IFIP VLSI SOC '03), Darmstadt,
Germany, December 1-3, 2003.

[3] Sklavos N. and Koufopavlou O., "Data Dependent Rotations,
a Trustworthy Approach for Future Encryption
Systems/Ciphers: Low Cost and High Performance",
Computers and Security, Elsevier Science Journal, vol 22, no
7, 2003.

[4] .Waksman A.A, “Permutation Network”, Journal of the ACM,
vol. 15, no 1 (1968), pp. 159-163.

[5] Goots N.D., Izotov B.V., Moldovyan A.A., and Moldovyan
N.A., Modern cryptography: Protect Your Data with Fast
Block Ciphers, A-LIST Publishing, Wayne, 2003.- 400 p.
(www.alistpublishing.com).

[6] Moldovyan N.A., “On Cipher Design Based on Switchable
Controlled operations”, proceedings of MMM-ANCS'03,
Lecture Notes in Computer Science, Springer verlag, vol. 2776
(2003), pp. 316-327.

32

P32/32
(C, e)

P32/32
(C, e) P32/32

(C,1)

(2, e) Qj

(1, e)
Qj

P32/32
(B,0)

P32/32
(B, e)

32
A B D C

http://www.alistpublishing.com)/

